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CBSA CBSA -- a prime user of a prime user of IrisIris biometricsbiometrics
Why iris ? – Easily accepted by public, touch-less / non-intrusive

Today: for collaborative user-engaged identification of pre-approved 
travellers in structured/overt environment (NEXUS)

Tomorrow: for fully-automated stand-off (on-the-fly) identification of 
Good and Bad people as they cross the border ?(3 persons crossing / sec)

Recent RFI examination (Feb 2009-Aug 2009) exposed the problems
even with Today’s systems/data

With Tomorrow’s stand-off systems, these problems will be even more 
significant!

Gorodnichy, D. O. “Evolution and evaluation of biometric systems” IEEE Symposium: 
Computational Intelligence for Security and Defence Applications, Ottawa June 2009

Gorodnichy, D. O. “Multi-order analysis framework for comprehensive biometric 
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Problems exposed through RFIProblems exposed through RFI
(With over 20.000.000 CBSA iris data, several state-of-art products, 

and over 6 months of coding and collecting/analyzing results) 
1. There exist many (>5) matching algorithms now 

- All produce single scores output only (no confidence)! 
- Binomial nature of Imposter distributions
- Binomial nature of Genuine distribution ? - with no noise

2. High FNMR (False Rejects, False Non-Match Rate)
3. High FTA (Failure To Acquire)
4. Despite many vendor/publications claims, systems often have :

1) more than one match below the threshold, 
2) two or more close matching scores

There is a need therefore to assign Confidence value to output!



AnonymizedAnonymized score distributionsscore distributions



AnonymizedAnonymized stats stats 
Using Multi-order score analysis [Gor09,10], Order 3 have shown that:
Many systems may improve FTA, FNMR, DET (match/non-match tradeoff) 

at the cost of  allowing more than one score below a threshold

(With 500 enrolled travelers, each having 6 passage images)



TradeTrade--off Curves with FCRoff Curves with FCR
DEFINITION [Gor10]: Failure of Confidence Rate (FCR) –

the rate of incidences in which there are more than one 
match below threshold 

0.001 0.028



Goal: assign confidences to decisionsGoal: assign confidences to decisions
Given: Person X arrives at the kiosk and  produces n scores: 

n-tuple S = (s1, s2, . . . , sn), si = HD(X, xi) 
Find: Sequence of calibrated confidence scores: 

the probability vector C = (c1, c2, . . . , cn), ci = P({X = xi} | S)

How: as in probabilistic weather forecasting [DeGroot1983] 
1. Make use of (assume) binomial nature of Genuine and Imposter 
score distributions [Daugman1993,2004]: 
 G ~ Binom(m’, u’), with  u’ = 0.11, d’ = 0.065 (m’=~115). 
 I   ~ Binom(m, u),   with  u = 0.5, m = 249    (d=~0.03)
 P(HD=k/m) = (k,m) u^k (1-u)^(m-k)

2. Bayes’s Theorem for ci = P({X = xi} | S) = 
= P({X = xi} /\S) = P({X = xi} /\ S) / P(S)  =  …

3. P({X = xi} /\ S) = …



Simple example to illustrateSimple example to illustrate
Enrolled: three individuals {x1, x2, x3}, six bits in iris string.

 Thus, n = 3, m = m’ = 6. 
 G  = Binom(m’, u’), I = Binom(m, u) with u’ = 1/3 and u = 1/2 .
 x1 = [0, 1, 0, 1, 0, 1], x2 = [1, 0, 0, 1, 1, 1], x3 = [1, 0, 1, 1, 0, 1]

New person: X = [0, 1, 0, 1, 0, 1].
 Matching scores S = (0, 0.5, 0.5). Decision scores: (1, 0, 0).

Using the theorem (for q=0 and P1=P2=P3), we obtain:
 confidence scores C = (0.8, 0.1, 0.1). 

How to apply to real system?
 Vendor  should provide: m’, u’ m, u
 User knows: Pi, q (a-priory  probabilities of each person / imposter)



Applied to real systemApplied to real system

EER = 5.40%  2.84% 
DETAUC (area under the DET) = 2.41  0.17

Proposed probabilistic score calibration can be added to any 
system at little computation cost as post-processing filter: 

 Provides more meaningful output - for risk mitigating 
procedures

 Improves overall recognition
 Introduces Order-3 biometric systems



AppendicesAppendices



Iris biometricsIris biometrics
 Image converted to 2048 

binary digits {0,1} 
 only small subsets of bits are 

mutually independent [1].
 Impostor HD scores 

follow binomial distribution: 
I ~ Binom(m, u), 
m = 249 and u = 0.5.

 The variable m represents the 
degrees-of-freedom and is a 
function of the mean u and 
the standard deviation d: 
m = u(1 − u) / d^2

 Genuine HD scores  [2]:
G ~ Binom(m’, u’) with
u’ = 0.11, d’ = 0.065



Main theorem and proof:Main theorem and proof:



Details of our simple exampleDetails of our simple example
Because m = m’ = 6, and u = 1-u=1/2, 2*u’=1-u’=2/3 many things 

get cancelled out …
Zi (Si) = (6, 6*Si) / (6, 6*Si) * ( (1/3 ^ 6 * 1/2 ^6) / (1/2 ^ 6 * 2/3 ^ 

6) ) ^ Si = (1/2^6)^Si = (1/2)^(6*Si)

For S2 = S3 = 0.5, we have: Z2 = Z3 = (1/2)^3 = 1/8.
For S1 = 0, Z1 = 1

Then Ci = ( Zi ) / (SUM Zi) = Zi/ ( 1/8 + 1/8 + 1) = 4/5* Zi
and C2 = 4/5 * (1/8) = 1/10,          C1 = 8/10



MultiMulti--order performance evaluationorder performance evaluation

Order 3:

Order 0:

Order 2:

Order 1:

Ref. [Gorodnichy2009,2010]



MultiMulti--order score analysisorder score analysis
Order 1 (Traditional):
 Examine single-scores to report trade-off (FMR/FNMR) curves
Order 2:
 Examine all scores to report the best (smallest) score 
Order 3:
 Examine all scores relationship to report Confidences

Five-score example: { 0.51, 0.32, 0.47, 0.34, 0.31 }. T = 0.33
 Order 1  0.32 
 Order 2  0.31 
 But in reality it could have been 0.34 ! (if there was noise)
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